Friday, June 17, 2011

moved everything to

From now on I'm at

http://reflectionsontime-pmer.blogspot.com/

and

pmerriam1 at gmail.com

Temporal Flow and Quantum Gravity

Wuthrich writes "the presentist maintains that the sum total of existence can be understood as consisting of a three-dimensional manifold of spatially distinct but temporally equally present, and thus simultaneous, events or objects."

That's wrong: it's possible to have a model in which each ontologically existing thing experiences an ontologically independent temporal flow, while simultaneously keeping other temporal correlations. The upshot is there is no single notion of present at which everything obtains in the same R3 space. For two particles, a state is not given in the manifold {t}crossR3, where {t} is the set of all times of a given reference frame. A state is given by two points on ({tparticle1}crossR3)cross({tparticle2}crossR3).

Consider an astronaut that accelerates away from the earth, goes to Alpha Centaui, turns around, comes back, and stops. Because of the astronaut's acceleration, when we compare clocks the astronaut's clock will show a smaller difference in leaving-to-returning duration than our clocks on earth. (Of course, this assumes the astronaut makes the trip in a frame that accelerates a lot compared to the earth's acceleration around the sun et. al.). Nevertheless, throughout the entire journey the astronaut observed, of himself, that clocks in his reference frame evolve at a rate of 1 second per qualitative second.

Vallicella on "the dog barked"

Bill Vallicella at Maverick Philosopher writes "The past-tense proposition that the dog barked... is in dire need of a truthmaker. There is need of an ontological ground of its truth."

The validity of "the dog barked", for the Presentist, could come from the present mathematical model that's an extrapolation of present causation. 


Reference: [maverickphilosopher] William F. Vallicella: Presentism and Causation: A Question for Alan Rhoda at http://lists.powerblogs.com/pipermail/maverickphilosopher/2005-December/000901.html.

After reading A Defence of Presentism by Ned Markosian I've got some questions.

After reading A Defence of Presentism by Ned Markosian I've got some questions.

1) what does it mean to "grab the thing that is now the referent of ‘Socrates’, and then to go back to see whether there is some past time at which that thing is a philosopher."? (p. 26) A Presentist can't "go back" into the past (if that's what it means).

2) what, for a Presentist, is the relationship between a mathematical object and the present?

What a Presentist could do is refer to a different location on his coordinated map, a "history", in the present. The map is such that the meaning of "Schubert started his Symphony No. 8 in 1822" presently refers to a map that is also present, but the map, a "history of sublime music", is ordered by our (present) notion of causality.

This allows us to suppose the mathematical object (... 1821, 1822, 1823, ...) "timelessly" coordinatizes history, in the present. The sense of 'time' in which the map is independent of change is precisely the map's own notion of time.

Reference: A Defence of Presentism by Ned Markosian, Western Washington University, on the web at http://myweb.facstaff.wwu.edu/nmarkos/Papers/Defpres.pdf, also a version appears in Zimmerman, Dean W. (ed.) Oxford Studies in Metaphysics, Volume 1 (Oxford: Oxford University Press, 2004), pp. 47-82.

Monday, June 13, 2011

Qualia and Ontological Ineffability

I can't resist putting up some stuff about qualia. Once again, things hinge on ontological ineffability.

1. qualia are inter-subjectively ineffable.
2. qualia are ontologically subjective and epistemologically objective.

Therefore, there are ontologically ineffable things. I take it qualia ontologically exist, the way some philosophers take numbers to ontologically exist. The question is how do we model ontologically ineffable qualia?

In the picture below, b1 and b2 are physical people, or at least their brains (or, more generally, they are physical information bearers). g1 is the quale green as experienced by b1, and similarly g2 is b2's experience of green. 'g1' is the name/concept/interface b1 has given to it's experience g1. b2 has a name for g1 also, namely, 'g1'. Strictly speaking these should be 'g1'b1, and 'g1'b2, but my point is that while g1 and g2 are ineffable, the names 'g1'b1, and 'g1'b2 are "effable"--independent of who's word they are, so we can refer to them as just 'g1'. Similarly, 'g2', 'b1', and 'b2' are names for their respective things.


Notice b1 has access to g1 and the names 'g1' and 'g2', but it does not have access to g2. This is equivalent to the common idea that I know the green that I see when I look at a tree, but I can't know for sure that when you look at the tree your green is qualitatively the same as mine, in this model. The green I see is g1 and the green you see is g2. However, we still have names for these experiences: 'g1' and 'g2'. Your name for my green should be interchangeable with my name for my green (in both cases they are "my green"), so we let 'g1'b1 = 'g1'b2 = 'g1'. Similarly for "your green", 'g2'.

Here's the point. We agree on all truths/propositions/concepts/instantaneous interactions (TPCI) that are given in terms of the names 'x', 'y', ... But b1 has the further resources of using g1 as a term, but not g2. Similarly b2 has the further resources of using g2 as a term, but not g1. In this universe information is instantiated information, so there are no TPCI in terms of both g1 and g2 simultaneously. There is no brain/mind that encompasses both g1 and g2 simultaneously. All of the facts of this universe are exhausted by the functions

(1) fb1(g1, 'x', 'y', ...), gb2(g2, 'x', 'y', ...)

There are also each bearers' functions restricted to the words 'x', 'y', ..., i.e., hb1('x', 'y', ...), jb2('x', 'y', ...). h and j are the "effable" parts of the ontology, so we'll assume h = j and, usually, these are even independent of there being any information bearers in the universe, so to the functions in (1) we add

(2) k('x', 'y', ...)

In particular, there is no function l(g1, g2, ...) because there is no ontological fact of the matter involving the simultaneous apprehension of both g1 and g2.

Some Examples

Consider the proposition

(3) Bubbles the cat weighs 20 lbs.

There is nothing particularly ineffable about (3). The word "Bubbles" refers to a particular cat, and "weighs 20 lbs." may, for our purposes, be taken to be a word that refers to a comparison between Bubbles and a standardized unit of weight. So the idea is

(4) k('Bubbles', 'weighs in lbs.') = 20

and this is independent of b1 and b2.

Now consider

(5) my green is

This is an ontologically different question for every ontologically distinct subject that understands it, necessarily. (5) is not independent of its instantiations. If I read (5) it means one thing, and if you read it it means something different. (5) would be analyzed as

(6) fb1(g1, 'g1') = what 'g1' refers to is g1

and

(7) fb2(g2, 'g2') = what 'g2' refers to is g2

Both (6) and (7) are true, maybe tautologously so. The statement that b2's green is qualitatively the same as b1's green is, from b1's perspective,

(8) fb1(g1, 'g2') = what 'g2' refers to is g1

This is false whenever b1 and b2's greens are qualitatively different. (4) as a logical function takes as input only names of things: its not necessary to do any physical lifting to assert (4). So (4) is usually understood to be independent of its instantiations. (5) can't be. The assertions 'g2' = 'g1' and 'g2' = g1 make sense whether true or not, but g2 = g1 is not even defined.

The cluster of (hard) mind-body problems is given by instances such as

(9) why is my green ?

I have to confess I find the materialist answer to this question incomprehensible, since any answer necessarily involves g1 itself, and not merely 'g1'.

Existence isn't 1st-order

The above seems to confirm existence isn't a 1st-order property. Suppose b1 is a person (who exists) and b2 is a unicorn (who doesn't exist). Suppose also that existence is ineffable, and call b1's existential "property" e1. Then b1's name for it's own existence is 'e1', and the name for b2's existence is 'e2'. But, while there is a class of relationships between 'e1' and e1, there is a strictly smaller class of relationships between 'e2' and e2. We can imagine the unicorn as existing, so we can suppose there is an e2. But the unicorn can't connect its name for existence 'e2' with its own existence e2. There is nothing to do the connecting. So if we imagine b2 to exist we are really only using another word (in this case "b2's existence"), which is really just another 'e2'. b1 cannot use b2's actual existence in b1's assertion of b2's existence any more than we can use the actual weight of Bubbles in asserting he/she weighs 20 lbs.

Ineffable Category

What's the form of mathematical theories that have ineffable objects in their ontologies? It's not that you have two functions that agree on a subdomain. The key is that the theories must themselves be instantiated in some way in their ontologies.

Wednesday, June 8, 2011

It's possible to make sense of 1 second per second

It's possible to make sense of "1 second per second".

This just means a clock-hand shows a difference of 1 second, through '1 second' of qualitative/absolute temporal flow. They are two different things. Thus, it makes sense to say, of a second clock, that it evolves at 1/2 second per second, if its relatively moving or in a gravitational gradient. It is *also* possible to say the second clock evolves at 1/2 second per second and mean you're only comparing the moving clock's hand positions with a local stationary clock's hand positions. That's all relativity does.

But in the previous sense, of things evolving in qualitative/absolute temporal flow, the local stationary clock evolves at a rate of 1 second per qualitative second, or q-second. The moving clock, similarly, evolves at a rate of 1 second per *its* q-second. Its q-seconds are not ontologically comparable to the local stationary q-seconds. The qualitative/absolute time is ontologically ineffable, as argued for previously. The ontologically "effable" part of time is given by the relativistic correlations. There is no fact of the matter, or ontologically possible comparison, between different q-seconds.